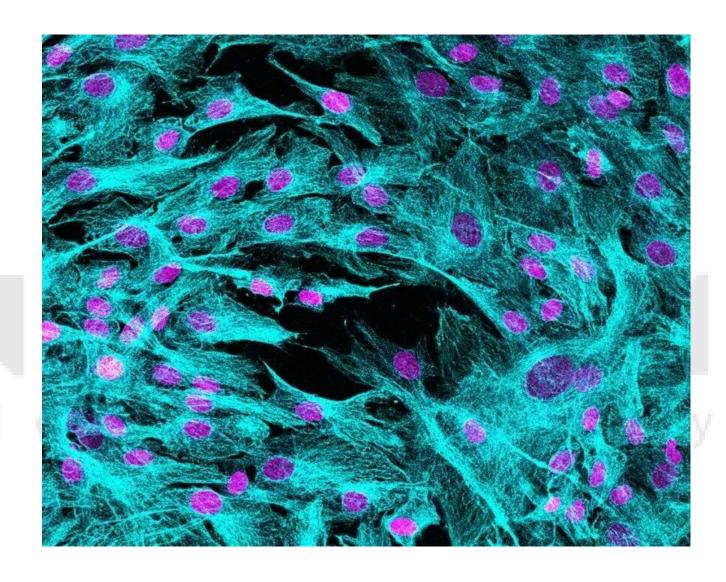
Результаты гистологического исследования при применении низкомолекулярной фракции секретома мезенхимных стволовых клеток при травматическом повреждении коленного сустава у крыс

Презентацию подготовила:


Биотехнолог ООО «НовиСтем»

Полякова Юлия Алексеевна

- Заболевания суставов у разных видов животных являются распространенным фактором;
- Травматические повреждения с последующим прогрессирующим воспалительным процессом занимают центральное место среди других причин;
- Они требуют длительной и комплексной терапии, направленной на замедление прогрессирования заболевания и минимизацию боли.

Восстановление структуры и функциональной активности тканей является основным направлением регенеративной медицины. Важным ресурсом, обеспечивающим репарацию тканей, являются стволовые клетки.

Мезенхимальные стволовые клетки (МСК, мезенхимальные стромальные клетки)

представляют собой мультипотентные стромальные клетки, которые могут дифференцироваться в различные типы клеток:

- остеобласты (костные клетки);
- хондроциты (хрящевые клетки);
- миоциты (мышечные клетки);
- адипоциты (жировые клетки, дающие начало жировой ткани мозга).

Цель исследования

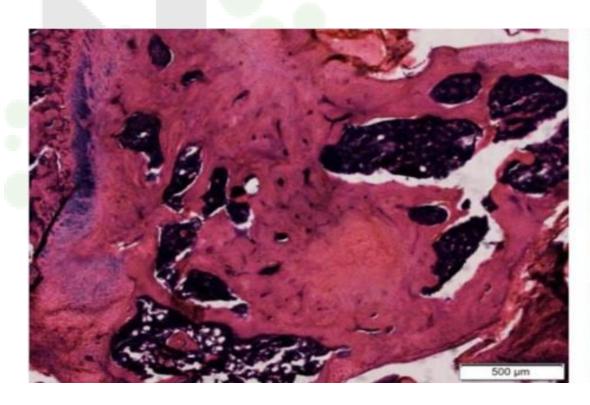
√ изучить эффективность применения низкомолекулярной фракции секретома МСК для регенерации тканей сустава крыс после моделирования механического повреждения суставной поверхности при долгосрочном наблюдении

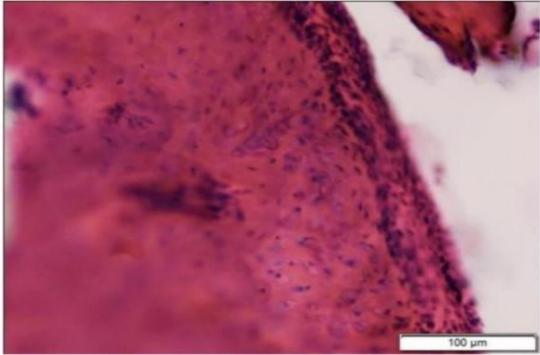
Материалы и методы

- Исследование проведено на 70 половозрелых нелинейных белых крысахсамцах возрастом 5-6 месяцев, массой 250-320 г.
- Модель исследования в параллельных группах, факториальная.
- Производен контроль исходного состояния и негативный контроль.
- Моделирование травмы левого коленного сустава в межмыщелковой области дистального эпифиза бедренной кости в виде стандартного дырчатого дефекта.

- Опытная группа: животные получали в/м инъекции низкомолекулярной фракции секретома МСК в дозе 0,045 мг/кг массы тела.
- Разовая доза инъекционного раствора исследуемого препарата для крысы с массой тела 250 г (±10 г) составляла 0,028 см³.

Контрольная группа — животные получали в/м инъекции 0,9% натрия хлорида («Новофарм-Биосинтез»).

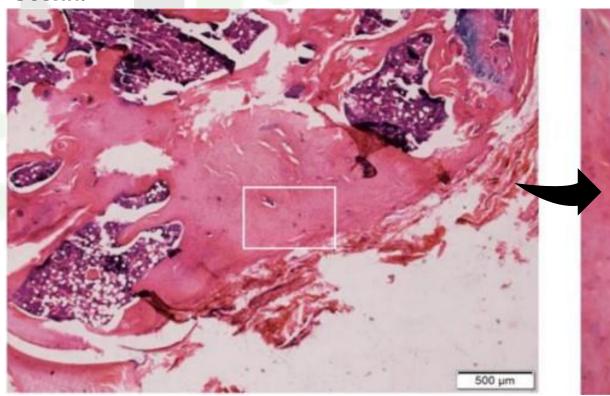

Зона дефекта. Опытная группа. 30 суток

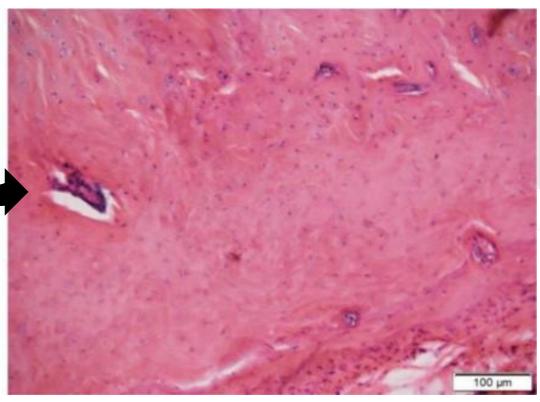

А – новообразованная костная ткань в зоне дефекта субхондральной кости, перемежающаяся с очагами хондроида.

Увеличение х 100; Окраска: гематоксилин и эозин.

Б – волокнистый хрящ, сформированный на суставной поверхности.

Увеличение х 400; Окраска: гематоксилин и эозин.

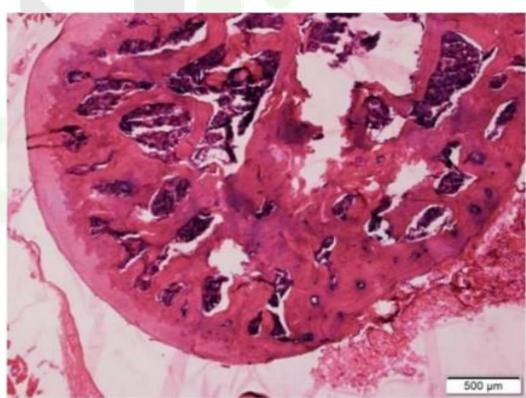

Зона дефекта. Контрольная группа. 30 суток


A — хондроид со сформированными сосудистыми каналами, расслоение матрикса, деструктивные трещины.

Увеличение х100; Окраска: гематоксилин и эозин.

Б – фрагмент рис. А, рыхлая соединительная ткань в зоне дефекта суставного хряща.

Увеличение х 400; Окраска: гематоксилин и эозин.

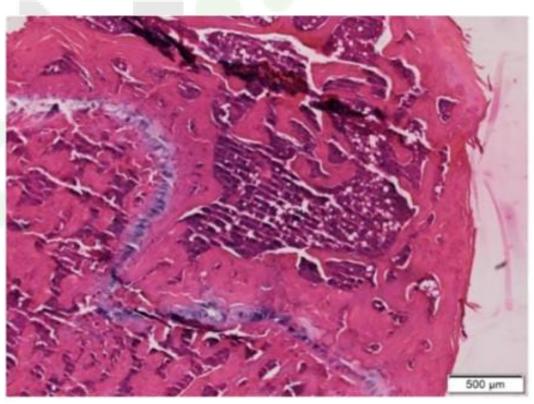


Зона дефекта. Опытная группа. 60 суток

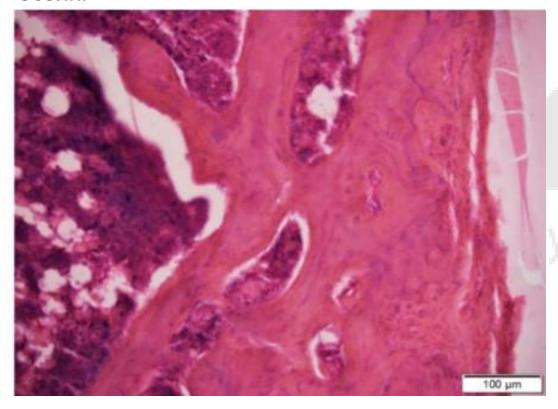
А – новообразованная костная ткань пластинчатой структуры.

Увеличение х 100; Окраска: гематоксилин и эозин.

Б – волокнистый и гиалиноподобный хрящ на поверхности дефекта.

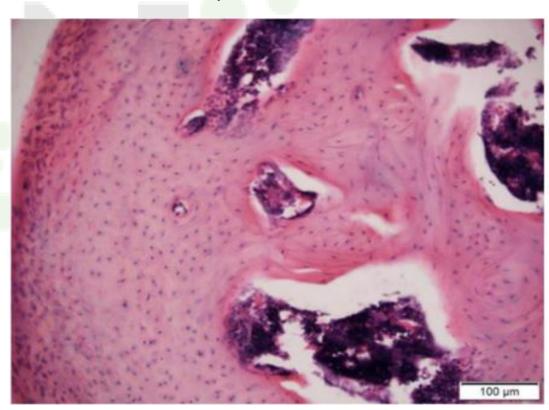

Увеличение х 400; Окраска: гематоксилин и эозин

Зона дефекта. Контрольная группа. 60 суток


А – костные трабекулы пластинчатой структуры в зоне дефекта субхондральной кости.

Увеличение x 100. Окраска: гематоксилин и эозин.

Б – соединительная ткань с разволокнением коллагенового каркаса в зоне дефекта суставного хряща.

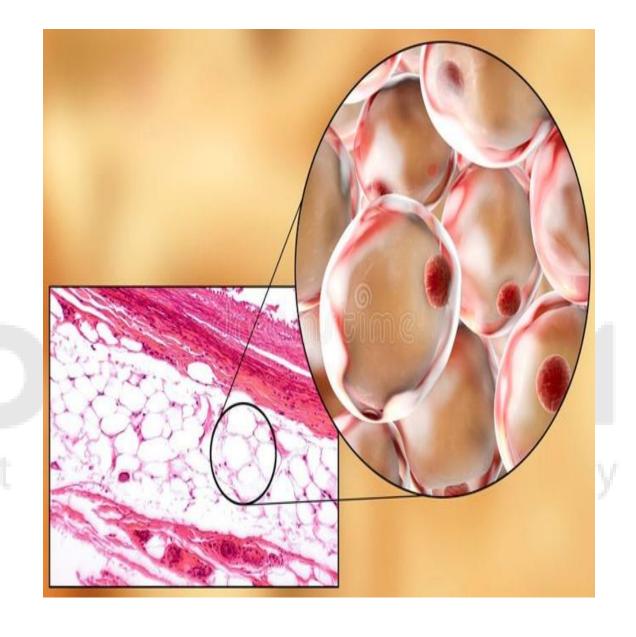

Увеличение х 400. Окраска: гематоксилин и эозин.

Зона дефекта суставной поверхности. 90 суток

А – <u>опытная группа</u>: в зоне дефекта формируется гиалиноподобный хрящ

Увеличение х 400. Окраска: гематоксилин и эозин.

Б – контрольная группа: в зоне дефекта формируется соединительная ткань.


Увеличение 400. Окраска: гематоксилин и эозин.

Результат

▶После применения низкомолекулярной фракции секретома МСК активация и деление хондроцитов происходят уже к 30-м суткам, а в последующие периоды наблюдается завершение созревания матрикса, формирование суставных структур, синовиальной жидкости и в целом образование полноценных функциональных тканей сустава.

Проведенное исследование подтверждает, что внедрение препаратов на основе низкомолекулярной фракции секретома МСК в клиническую практику при лечении костносуставных патологий является целесообразным и перспективным.

Благодарю за внимание!

- **Адрес компании НовиСтем:** г. Москва, ул. Василисы Кожиной, 1;
- **Время работы:**: пн-пт с 9:00 до 17:00;
- Телефон: 8 (800) 222 37 57;
- Почта: info@novistem.ru.

